Л 8. Понятие производной функции. Геометрический и физический смысл производной. Понятие дифференцируе мости функций. Дифференциал функции. Правило дифференцирования сложной функции. Раскрыгие неопределенностей

Пусть в некоторой окрестности точки x_0 и в самой точке x_0 определена функция y = f(x).

Определение. Прира щение м аргумента x в точке x_0 называется разность $\Delta x = x - x_0$.

Определение. Прира цением функции y = f(x) в точке x_0 называется разность

$$\Delta f = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0).$$

Это прира щение зависит от двух аргументов x_0 и Δx . Геометрически Δx и Δf означают из менения абсциссы и ординаты точки на графике y = f(x) при переме щении из точки $(x_0, f(x_0))$ в точку (x, f(x))

Определение. Если функция y = f(x) определена в некоторой окрестности точки x_0 и $\lim_{\Delta x \to 0} \Delta f = 0$, то она называется непрерывной в точке x_0 . В самом деле, этот предел означает, что

$$\lim_{\Delta x \to 0} (f(x) - f(x_0)) = 0, \text{ T. e. } \lim_{x \to x_0} f(x) = f(x_0).$$

Определение. Если существует предел $\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0)$ то это число называется производной функции y = f(x) в точке x_0 . Эта производная обозначается также одним из следующих символов:

$$y'(x_0) , \frac{df}{dx}(x_0) , f'_x \bigg|_{x=x_0} , \frac{df}{dx}\bigg|_{x=x_0}.$$

Этот предел можно записывать также в виде

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Определение. Функция y = f(x) называется дифференцируемой в точке x_0 , если она имеет конечную производную в этой точке.

Выясним теперь связь между дифференцируемость ю и непрерывность ю функции, для этого из определения выразим Δf . $\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0) \Leftrightarrow \frac{\Delta f}{\Delta x} = f'(x_0) + \alpha(\Delta x), \text{ (где } \alpha(\Delta x) - \text{ б м при } \Delta x \to 0 \text{ (свойство } 3^0 \text{ б. м., модуль 3)).}$

Следовательно, $\Delta f = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$.

Теоре ма. Если функция y = f(x) дифференцируе ма в точке x_0 , то она непрерывна в этой точке.

1. 1. Механический смысл производной. Пусть некоторая точка движется вдоль прямой и за время t проходит путь S(t).

Тог да за проме жуток времени от t_0 до $t_0+\Delta t$ она проходит путь $S(t_0+\Delta t)-S(t_0)=\Delta S$, и средняя скорость точки на промежутке $\begin{bmatrix} t_0,t_0+\Delta t \end{bmatrix}$ равна $v_{cp}=\frac{\Delta S}{\Delta t}$. М новенная скорость v точки в момент t_0 равна пределу v_{cp} при $\Delta t \to 0$ $v(t_0)=\lim_{\Delta t \to 0} v_{cp}=\lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t}=S'(t_0)$.

Игак, мгновенная скорость точки в момент t_0 равна производной от пути, проходимого этой точкой по времени при $t=t_0$. Эго и есть механический смысл производной.

1. 2. Геометрический смысл производной. Через две точки $A(x_0, f(x_0))$ и $B(x_0 + \Delta x, f(x_0) + \Delta f)$ на графике функции y = f(x) проведем прямую Эта прямая называется секупей к графику функции. Ее угловой коэффициент, т. е. тангенс угла наклона к оси Ox равен

$$tg\,\varphi = \frac{|BC|}{|AC|} = \frac{\Delta f}{\Delta x}$$
.

Здесь Δx может быгь как положительным, так и отрицательным

Определение. Касательной к графику функции y = f(x) в точке x_0 называется прямая, являющаяся предельным положением секущей, проходящей через точку $(x_0, f(x_0))$ при $\Delta x \to 0$.

Другими словами, касательная AD в точке $(x_0, f(x_0))$ - это прямая, проходя щая через $(x_0, f(x_0))$, угловой коэффициент которой $tg \varphi_0 = \lim_{\Delta x \to 0} tg \varphi$.

Если $f'(x_0)$ существует, то из (1) следует, что $tg\varphi_0 = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0)$. В этом случае график функции в точке x_0 имеет касательную

Таким образом, $f'(x_0)$ есть угловой коэффициент касательной к графику y = f(x) в точке $(x_0, f(x_0))$ (геометрический смысл производной).

Уравнение этой касательной имеет вид $y - f(x_0) = f'(x_0)(x - x_0)$

Если $f'(x_0)$ не существует, то касательной к графику функции в точке $(x_0, f(x_0))$ провести нельзя (например, y = |x| при $x_0 = 0$).

Вычислим производные некоторых основных элементарных функций, исходя из определения производной.

- 1. Постоянная функция y = C. $C' = \lim_{\Delta x \to 0} \frac{C C}{\Delta x} = 0$.
- 2. Пожазательная функция $y = x^a$, a > 0, $a \ne 1$.

$$\left(a^{x}\right)' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta x} = a^{x} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = a^{x} \ln a.$$

В частности, $(e^x)' = e^x \ln e = e^x$.

3. Степенная функция $y = x^a$.

$$(x^{a})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{a} - x^{a}}{\Delta x} = x^{a} \lim_{\Delta x \to 0} \frac{\left(1 + \frac{\Delta x}{x}\right)^{a} - 1}{\Delta x} = x^{a-1} \lim_{\Delta x \to 0} \frac{\left(1 + \frac{\Delta x}{x}\right)^{a} - 1}{\frac{\Delta x}{x}} = \left|\frac{\Delta x}{x} = h\right| = x^{a-1} \lim_{h \to 0} \frac{(1 + h)^{a} - 1}{h} = a \cdot x^{a-1}$$

В частности,
$$(x^2)' = 2 \cdot x^{2-1} = 2x$$
, $(\sqrt{x})' = \frac{1}{2} \cdot x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{x}}$, $(\frac{1}{x})' = -1x^{-1-1} = -\frac{1}{x^2}$.

Теоре ма 1. (правила дифференцирования суммы, произведения и частного). Если функции y = u(x) и y = v(x) дифференцируемы в точке x, то сумма, произведение и частное этих функций (частное при условии, что $v(x) \neq 0$) также дифференцируемы в этой точке и имеют место следующие формулы

Дифференцирование сложной функции. Пусть функция u=u(x) дифференцируема в точке x_0 , $u(x_0)=u_0$, функция y=f(u) дифференцируема в точке u_0 , тогда сложная функция y=f(u(x)) дифференцируема в x_0 и ее производная равна $\left[f(u(x_0))\right]'=f'(u_0)\cdot u'(x_0)$.

Параметрически заданная функция и ее производная

 Φy нкцию y = f(x) иногда удобно записывать в параметрическом виде

$$\begin{cases} x = \phi(t), \\ y = \psi(t), \end{cases} t \in [\alpha, \beta].$$

Таким образом описывается движение точки на плоскости в механике (t время, x, y – координаты точки).

Теоре ма. Пусть функция y=f(x) задана в параметрическом виде $\begin{cases} x=\varphi(t), \\ y=\psi(t), \end{cases}$ где φ и ψ определены в окрестности t_0 , $\varphi(t_0)=x_0$. Тогда, если производные $\varphi'(t_0)$ и $\psi'(t_0)$ существуют и $\varphi'(t_0)\neq 0$, то функция y=f(x) дифференцируе ма в точке x_0 и $f'(x_0)=\frac{\psi'(t_0)}{\varphi'(t_0)}$.

Определение. Если приращение функции y = f(x) в точке x_0 можно представить в виде $\Delta f = a \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где a - число, а $\alpha(\Delta x)$ - б м при $\Delta x \to 0$, то величина $df(x_0) = a \cdot \Delta x$ называется дифференциалом функции y = f(x) в точке x_0 (главной часть ю приращения).

Теоре ма (о дифференциале). Для того, чтобы функция y = f(x) имела дифференциал в точке x_0 , необходимо и достаточно, чтобы существовала производная $f'(x_0)$, при этом $df(x_0) = f'(x_0) \Delta x$ (т.е. $a = f'(x_0)$).

Пример. Вычислить приближенно $\sin 46^{\circ}$. Имее м

$$f(x) = \sin x, f'(x) = (\sin x)' = \cos x, x_0 = 45^\circ = \frac{\pi}{4}, \Delta x = 1^\circ = \frac{\pi}{180} \Rightarrow \sin(45^\circ + 1^\circ) \approx \sin\frac{\pi}{4} + \cos\frac{\pi}{4} \cdot \frac{\pi}{180} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{3,14}{180} \approx 0,7191$$

Правила вычисления дифференциала непосредственно следуют из правил вычисления производных.

Пусть функции y = u(x) и y = v(x) дифференцируемы в точке, тогда

- 1) $d(u \pm v) = du \pm dv$, d(u+c) = du, где с число.
- 2) $d(u \cdot v) = vdu + udv$, $d(cu) = c \cdot du$.

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}, \text{ если } v(x) \neq 0.$$

4) Если функция u = u(x) дифференцируема в точке x, a y = f(u) в соответствующей точке u, то для сложной функции y = f(u(x)), $df(u) = f'(u) \cdot u'(x) dx = f'(u) du$.

Это правило называют инвариантностью формы дифференциала. Для функции y = f(u) дифференциал df = f'(u)du, как в случае, когда u независимая переменная, так и в случае, когда u = u(x) есть функция другой переменной x.